We evaluated the efficacy of an innovative technique using an S3+ device equipped with two custom-made nanosensors (e-nose). These sensors are integrated into kitchen appliances, such as planetary mixers, to monitor and assess dough leavening from preparation to the fully risen stage. Since monitoring in domestic appliances is often subjective and non-reproducible, this approach aims to ensure safe, high-quality, and consistent results for consumers. Two sensor chips, each with three metal oxide semiconductor (MOS) elements, were used to assess doughs prepared with flours of varying strengths (W200, W250, W390). Analyses were conducted continuously (from the end of mixing to 1.5 h of leavening) and in two distinct phases: pre-leavening (PRE) and post-leavening (POST). The technique was validated through solid-phase micro-extraction combined with gas chromatography–mass spectrometry (SPME-GC-MS), used to analyze volatile profiles in both phases. The S3+ device clearly discriminated between PRE and POST samples in 3D Linear Discriminant Analysis (LDA) plots, while 2D LDA confirmed flour-type discrimination during continuous leavening. These findings were supported by SPME-GC-MS results, highlighting differences in the volatile organic compound (VOC) profiles. The system achieved 100% classification accuracy between PRE and POST stages and effectively distinguished all flour types. Integrating this e-nose into kitchen equipment offers a concrete opportunity to optimize leavening by identifying the ideal endpoint, improving reproducibility, and reducing waste. In future applications, sensor data could support feedback control systems capable of adjusting fermentation parameters like time and temperature in real time.

Nano-Tailored Triple Gas Sensor for Real-Time Monitoring of Dough Preparation in Kitchen Machines

Genzardi D.;Caruso I.
;
Sberveglieri V.
;
Nunez Carmona E.
2025

Abstract

We evaluated the efficacy of an innovative technique using an S3+ device equipped with two custom-made nanosensors (e-nose). These sensors are integrated into kitchen appliances, such as planetary mixers, to monitor and assess dough leavening from preparation to the fully risen stage. Since monitoring in domestic appliances is often subjective and non-reproducible, this approach aims to ensure safe, high-quality, and consistent results for consumers. Two sensor chips, each with three metal oxide semiconductor (MOS) elements, were used to assess doughs prepared with flours of varying strengths (W200, W250, W390). Analyses were conducted continuously (from the end of mixing to 1.5 h of leavening) and in two distinct phases: pre-leavening (PRE) and post-leavening (POST). The technique was validated through solid-phase micro-extraction combined with gas chromatography–mass spectrometry (SPME-GC-MS), used to analyze volatile profiles in both phases. The S3+ device clearly discriminated between PRE and POST samples in 3D Linear Discriminant Analysis (LDA) plots, while 2D LDA confirmed flour-type discrimination during continuous leavening. These findings were supported by SPME-GC-MS results, highlighting differences in the volatile organic compound (VOC) profiles. The system achieved 100% classification accuracy between PRE and POST stages and effectively distinguished all flour types. Integrating this e-nose into kitchen equipment offers a concrete opportunity to optimize leavening by identifying the ideal endpoint, improving reproducibility, and reducing waste. In future applications, sensor data could support feedback control systems capable of adjusting fermentation parameters like time and temperature in real time.
2025
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Sesto Fiorentino (FI)
fermentation
IoT system
leavening
MOS gas sensors
volatile organic compounds (VOCs) analysis
File in questo prodotto:
File Dimensione Formato  
sensors-25-02951-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/546963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact