This Letter reports on the active dopant profiling and Ohmic contact behavior in degenerate P-implanted silicon carbide (4H-SiC) layers. Hall measurements showed a nearly temperature-independent electron density, corresponding to an electrical activation of about 80% of the total implanted dose. Using the Hall result as calibration, the depth resolved active P-profile was extracted by scanning capacitance microscopy (SCM). Such information on the active P-profile permitted to elucidate the current injection mechanism at the interface of annealed Ni Ohmic contacts with the degenerate n-type 4H-SiC layer. Modeling the temperature dependence of the specific contact resistance with the thermionic field emission mechanism allowed extracting a doping concentration of 8.5x10(19)cm(-3) below the metal/4H-SiC interface, in excellent agreement with the value independently obtained by the SCM depth profiling. The demonstrated active dopant profiling methodology can have important implications in the 4H-SiC device technology.

Active dopant profiling and Ohmic contacts behavior in degenerate n-type implanted silicon carbide

Spera Monia;Greco Giuseppe;Vivona Marilena;Fiorenza Patrick;Giannazzo Filippo;Roccaforte Fabrizio
2020

Abstract

This Letter reports on the active dopant profiling and Ohmic contact behavior in degenerate P-implanted silicon carbide (4H-SiC) layers. Hall measurements showed a nearly temperature-independent electron density, corresponding to an electrical activation of about 80% of the total implanted dose. Using the Hall result as calibration, the depth resolved active P-profile was extracted by scanning capacitance microscopy (SCM). Such information on the active P-profile permitted to elucidate the current injection mechanism at the interface of annealed Ni Ohmic contacts with the degenerate n-type 4H-SiC layer. Modeling the temperature dependence of the specific contact resistance with the thermionic field emission mechanism allowed extracting a doping concentration of 8.5x10(19)cm(-3) below the metal/4H-SiC interface, in excellent agreement with the value independently obtained by the SCM depth profiling. The demonstrated active dopant profiling methodology can have important implications in the 4H-SiC device technology.
2020
Istituto per la Microelettronica e Microsistemi - IMM
silicon carbide
ion implantation
ohmi contacts
File in questo prodotto:
File Dimensione Formato  
013502_1_online.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact