This Letter reports on the active dopant profiling and Ohmic contact behavior in degenerate P-implanted silicon carbide (4H-SiC) layers. Hall measurements showed a nearly temperature-independent electron density, corresponding to an electrical activation of about 80% of the total implanted dose. Using the Hall result as calibration, the depth resolved active P-profile was extracted by scanning capacitance microscopy (SCM). Such information on the active P-profile permitted to elucidate the current injection mechanism at the interface of annealed Ni Ohmic contacts with the degenerate n-type 4H-SiC layer. Modeling the temperature dependence of the specific contact resistance with the thermionic field emission mechanism allowed extracting a doping concentration of 8.5x10(19)cm(-3) below the metal/4H-SiC interface, in excellent agreement with the value independently obtained by the SCM depth profiling. The demonstrated active dopant profiling methodology can have important implications in the 4H-SiC device technology.
Active dopant profiling and Ohmic contacts behavior in degenerate n-type implanted silicon carbide
Spera Monia;Greco Giuseppe;Vivona Marilena;Fiorenza Patrick;Giannazzo Filippo;Roccaforte Fabrizio
2020
Abstract
This Letter reports on the active dopant profiling and Ohmic contact behavior in degenerate P-implanted silicon carbide (4H-SiC) layers. Hall measurements showed a nearly temperature-independent electron density, corresponding to an electrical activation of about 80% of the total implanted dose. Using the Hall result as calibration, the depth resolved active P-profile was extracted by scanning capacitance microscopy (SCM). Such information on the active P-profile permitted to elucidate the current injection mechanism at the interface of annealed Ni Ohmic contacts with the degenerate n-type 4H-SiC layer. Modeling the temperature dependence of the specific contact resistance with the thermionic field emission mechanism allowed extracting a doping concentration of 8.5x10(19)cm(-3) below the metal/4H-SiC interface, in excellent agreement with the value independently obtained by the SCM depth profiling. The demonstrated active dopant profiling methodology can have important implications in the 4H-SiC device technology.File | Dimensione | Formato | |
---|---|---|---|
013502_1_online.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.