Stacked aluminum oxide/aluminum nitride (Al2O3/AlN) layers were deposited on n-type (0001) 4H–SiC by atomic layer deposition (ALD) processes. The structural and chemical properties have been investigated and are consistent with the growth of ∼9 nm oriented (0001) AlN layer, and an upper 20 nm amorphous Al2O3 layer. The entire Al2O3/AlN stack was electrically characterized and compared with respect to a single Al2O3 layer having the same total thickness. The Al2O3/AlN bilayer exhibited a higher dielectric constant (κ = 8.7), a significant reduction of the oxide trapped charges (NOT) from 7.8 × 1012 to 1.8 × 1012 cm−2, as well as a decrease of a factor 2 of the interface traps density (Dit) compared with the Al2O3 single layer values. A large positive flat band voltage shift was observed in the C–V curves acquired on MIS capacitors. The comparison of the behaviour of MIS capacitors fabricated on both n-type and p-type 4H–SiC demonstrated that deep interface states (near the 4H–SiC mid gap) acting as acceptors or donors for the n-type and p-type MIS contribute to the observed behavior. This hypothesis has been also corroborated by TCAD simulations.
Towards aluminum oxide/aluminum nitride insulating stacks on 4H–SiC by atomic layer deposition
Galizia, Bruno;Fiorenza, Patrick;Schiliro', Emanuela;Greco, Giuseppe;Lo Nigro, Raffaella
;Roccaforte, Fabrizio
2024
Abstract
Stacked aluminum oxide/aluminum nitride (Al2O3/AlN) layers were deposited on n-type (0001) 4H–SiC by atomic layer deposition (ALD) processes. The structural and chemical properties have been investigated and are consistent with the growth of ∼9 nm oriented (0001) AlN layer, and an upper 20 nm amorphous Al2O3 layer. The entire Al2O3/AlN stack was electrically characterized and compared with respect to a single Al2O3 layer having the same total thickness. The Al2O3/AlN bilayer exhibited a higher dielectric constant (κ = 8.7), a significant reduction of the oxide trapped charges (NOT) from 7.8 × 1012 to 1.8 × 1012 cm−2, as well as a decrease of a factor 2 of the interface traps density (Dit) compared with the Al2O3 single layer values. A large positive flat band voltage shift was observed in the C–V curves acquired on MIS capacitors. The comparison of the behaviour of MIS capacitors fabricated on both n-type and p-type 4H–SiC demonstrated that deep interface states (near the 4H–SiC mid gap) acting as acceptors or donors for the n-type and p-type MIS contribute to the observed behavior. This hypothesis has been also corroborated by TCAD simulations.File | Dimensione | Formato | |
---|---|---|---|
mssp2024b.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MSSP-D-23-03104accepted.pdf
embargo fino al 20/02/2026
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
545.84 kB
Formato
Adobe PDF
|
545.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.