This paper reports the development of a new methodology for automatic detection and mapping of underwater vegetation by means of highly autonomous marine robotic platforms. In particular, the work describes the exploitation of a Remotely Operated Vehicle (ROV), equipped with a multi-parametric sensors package, for the exploration and characterization of sea-bottoms interested by the presence of the Posidonia oceanica seagrass, which represents a valuable indicator of the environmental health. The proposed methodology relies on the systematic exploration of the sea-bottom by means of the ROV acquiring acoustic data and video imagery of the seabed, in order to reconstruct a 2.5D model of the environment (i.e. an elevation map of the sea-bottom). The data collection is achieved by the employment of a single beam echosounder for seabed range measurements and a down-looking underwater camera. Furthermore, an acoustic data procedural analysis is developed to automatically detect the Posidonia presence, so that in future works it will be possible to operate also in low-visibility conditions. Data acquisition was carried out over different seafloor types in coastal area near Biograd Na Moru (Croatia) and the results are reported in the paper.

Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles

Roberta Ferretti;Marco Bibuli;Massimo Caccia;Davide Chiarella;Angelo Odetti;Andrea Ranieri;Enrica Zereik;Gabriele Bruzzone
2017

Abstract

This paper reports the development of a new methodology for automatic detection and mapping of underwater vegetation by means of highly autonomous marine robotic platforms. In particular, the work describes the exploitation of a Remotely Operated Vehicle (ROV), equipped with a multi-parametric sensors package, for the exploration and characterization of sea-bottoms interested by the presence of the Posidonia oceanica seagrass, which represents a valuable indicator of the environmental health. The proposed methodology relies on the systematic exploration of the sea-bottom by means of the ROV acquiring acoustic data and video imagery of the seabed, in order to reconstruct a 2.5D model of the environment (i.e. an elevation map of the sea-bottom). The data collection is achieved by the employment of a single beam echosounder for seabed range measurements and a down-looking underwater camera. Furthermore, an acoustic data procedural analysis is developed to automatically detect the Posidonia presence, so that in future works it will be possible to operate also in low-visibility conditions. Data acquisition was carried out over different seafloor types in coastal area near Biograd Na Moru (Croatia) and the results are reported in the paper.
Campo DC Valore Lingua
dc.authority.anceserie IFAC-PAPERSONLINE -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.orgunit Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - -
dc.authority.orgunit Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari -
dc.authority.orgunit Istituto di iNgegneria del Mare - INM (ex INSEAN) -
dc.authority.people Roberta Ferretti it
dc.authority.people Marco Bibuli it
dc.authority.people Massimo Caccia it
dc.authority.people Davide Chiarella it
dc.authority.people Angelo Odetti it
dc.authority.people Andrea Ranieri it
dc.authority.people Enrica Zereik it
dc.authority.people Gabriele Bruzzone it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova *
dc.contributor.appartenenza Istituto di iNgegneria del Mare - INM (ex INSEAN) - Sede Secondaria Genova *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.appartenenza.mi 921 *
dc.contributor.appartenenza.mi 1061 *
dc.date.accessioned 2024/02/21 06:07:18 -
dc.date.available 2024/02/21 06:07:18 -
dc.date.issued 2017 -
dc.description.abstracteng This paper reports the development of a new methodology for automatic detection and mapping of underwater vegetation by means of highly autonomous marine robotic platforms. In particular, the work describes the exploitation of a Remotely Operated Vehicle (ROV), equipped with a multi-parametric sensors package, for the exploration and characterization of sea-bottoms interested by the presence of the Posidonia oceanica seagrass, which represents a valuable indicator of the environmental health. The proposed methodology relies on the systematic exploration of the sea-bottom by means of the ROV acquiring acoustic data and video imagery of the seabed, in order to reconstruct a 2.5D model of the environment (i.e. an elevation map of the sea-bottom). The data collection is achieved by the employment of a single beam echosounder for seabed range measurements and a down-looking underwater camera. Furthermore, an acoustic data procedural analysis is developed to automatically detect the Posidonia presence, so that in future works it will be possible to operate also in low-visibility conditions. Data acquisition was carried out over different seafloor types in coastal area near Biograd Na Moru (Croatia) and the results are reported in the paper. -
dc.description.affiliations Consiglio Nazionale delle Ricerche - Istituto di Studi sui Sistemi Intelligenti per l'Automazione, Via De Marini 6, 16149 Genova, Italy -
dc.description.allpeople Ferretti, Roberta; Bibuli, Marco; Caccia, Massimo; Chiarella, Davide; Odetti, Angelo; Ranieri, Andrea; Zereik, Enrica; Bruzzone, Gabriele -
dc.description.allpeopleoriginal Roberta Ferretti, Marco Bibuli, Massimo Caccia, Davide Chiarella, Angelo Odetti, Andrea Ranieri, Enrica Zereik, Gabriele Bruzzone -
dc.description.fulltext open en
dc.description.numberofauthors 8 -
dc.identifier.doi 10.1016/j.ifacol.2017.08.2504 -
dc.identifier.isi WOS:000423965200064 -
dc.identifier.scopus 2-s2.0-85044268156 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/337741 -
dc.identifier.url https://doi.org/10.1016/j.ifacol.2017.08.2504 -
dc.language.iso eng -
dc.relation.conferencedate 9-14/7/2017 -
dc.relation.conferencename The 20th World Congress of the International Federation of Automatic Control, IFAC 2017 -
dc.relation.conferenceplace Toulouse, France -
dc.relation.firstpage 12386 -
dc.relation.lastpage 12391 -
dc.relation.numberofpages 6 -
dc.relation.volume Volume 50, Issue 1 -
dc.subject.keywords Posidonia detection -
dc.subject.keywords seabed mapping -
dc.subject.keywords Unmanned Marine Vehicles -
dc.subject.singlekeyword Posidonia detection *
dc.subject.singlekeyword seabed mapping *
dc.subject.singlekeyword Unmanned Marine Vehicles *
dc.title Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 378517 -
iris.isi.extIssued 2017 -
iris.isi.extTitle Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles -
iris.mediafilter.data 2025/03/19 03:37:08 *
iris.orcid.lastModifiedDate 2025/03/16 01:57:05 *
iris.orcid.lastModifiedMillisecond 1742086625514 *
iris.scopus.extIssued 2017 -
iris.scopus.extTitle Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles -
iris.sitodocente.maxattempts 4 -
iris.unpaywall.bestoahost publisher *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.1016/j.ifacol.2017.08.2504 *
iris.unpaywall.hosttype publisher *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://doi.org/10.1016/j.ifacol.2017.08.2504 *
iris.unpaywall.metadataCallLastModified 20/04/2025 04:59:13 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1745117953847 -
iris.unpaywall.oastatus gold *
isi.authority.anceserie IFAC-PAPERSONLINE###2405-8963 *
isi.authority.sdg Goal 13: Climate action###12093 *
isi.category AC *
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.name Roberta -
isi.contributor.name Marco -
isi.contributor.name Massimo -
isi.contributor.name Davide -
isi.contributor.name Angelo -
isi.contributor.name Andrea -
isi.contributor.name Enrica -
isi.contributor.name Gabriele -
isi.contributor.researcherId P-3724-2018 -
isi.contributor.researcherId L-7206-2019 -
isi.contributor.researcherId P-6407-2018 -
isi.contributor.researcherId C-3459-2015 -
isi.contributor.researcherId O-2931-2015 -
isi.contributor.researcherId AAY-2352-2020 -
isi.contributor.researcherId AAR-7875-2020 -
isi.contributor.researcherId B-5771-2015 -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.subaffiliation Ist Studi Sistemi Intelligenti Automaz -
isi.contributor.surname Ferretti -
isi.contributor.surname Bibuli -
isi.contributor.surname Caccia -
isi.contributor.surname Chiarella -
isi.contributor.surname Odetti -
isi.contributor.surname Ranieri -
isi.contributor.surname Zereik -
isi.contributor.surname Bruzzone -
isi.date.issued 2017 *
isi.description.abstracteng This paper reports the development of a new methodology for automatic detection and mapping of underwater vegetation by means of highly autonomous marine robotic platforms. In particular, the work describes the exploitation of a Remotely Operated Vehicle (ROV), equipped with a multi-parametric sensors package, for the exploration and characterization of sea-bottoms interested by the presence of the Posidonia oceanica seagrass, which represents a valuable indicator of the environmental health. The proposed methodology relies on the systematic exploration of the sea-bottom by means of the ROV acquiring acoustic data and video imagery of the seabed, in order to reconstruct a 2.5D model of the environment (i.e. an elevation map of the sea-bottom). The data collection is achieved by the employment of a single beam echosounder for seabed range measurements and a down-looking underwater camera. Furthermore, an acoustic data procedural analysis is developed to automatically detect the Posidonia presence, so that in future works it will be possible to operate also in low-visibility conditions. Data acquisition was carried out over different seafloor types in coastal area near Biograd Na Moru (Croatia) and the results are reported in the paper. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. *
isi.description.allpeopleoriginal Ferretti, R; Bibuli, M; Caccia, M; Chiarella, D; Odetti, A; Ranieri, A; Zereik, E; Bruzzone, G; *
isi.document.sourcetype WOS.ISTP *
isi.document.type Proceedings Paper *
isi.document.types Proceedings Paper *
isi.identifier.doi 10.1016/j.ifacol.2017.08.2504 *
isi.identifier.isi WOS:000423965200064 *
isi.journal.journaltitle IFAC PAPERSONLINE *
isi.journal.journaltitleabbrev IFAC PAPERSONLINE *
isi.language.original English *
isi.publisher.place RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS *
isi.relation.firstpage 12386 *
isi.relation.issue 1 *
isi.relation.lastpage 12391 *
isi.relation.volume 50 *
isi.title Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles *
scopus.authority.anceserie IFAC-PAPERSONLINE###2405-8963 *
scopus.category 2207 *
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.affiliation Istituto di Studi sui Sistemi Intelligenti per l'Automazione -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.afid 60016217 -
scopus.contributor.auid 56783812000 -
scopus.contributor.auid 24485475600 -
scopus.contributor.auid 35085742200 -
scopus.contributor.auid 25930765400 -
scopus.contributor.auid 57105575700 -
scopus.contributor.auid 56512556800 -
scopus.contributor.auid 35106497900 -
scopus.contributor.auid 35611015100 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Roberta -
scopus.contributor.name Marco -
scopus.contributor.name Massimo -
scopus.contributor.name Davide -
scopus.contributor.name Angelo -
scopus.contributor.name Andrea -
scopus.contributor.name Enrica -
scopus.contributor.name Gabriele -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.subaffiliation Consiglio Nazionale delle Ricerche; -
scopus.contributor.surname Ferretti -
scopus.contributor.surname Bibuli -
scopus.contributor.surname Caccia -
scopus.contributor.surname Chiarella -
scopus.contributor.surname Odetti -
scopus.contributor.surname Ranieri -
scopus.contributor.surname Zereik -
scopus.contributor.surname Bruzzone -
scopus.date.issued 2017 *
scopus.description.abstracteng This paper reports the development of a new methodology for automatic detection and mapping of underwater vegetation by means of highly autonomous marine robotic platforms. In particular, the work describes the exploitation of a Remotely Operated Vehicle (ROV), equipped with a multi-parametric sensors package, for the exploration and characterization of sea-bottoms interested by the presence of the Posidonia oceanica seagrass, which represents a valuable indicator of the environmental health. The proposed methodology relies on the systematic exploration of the sea-bottom by means of the ROV acquiring acoustic data and video imagery of the seabed, in order to reconstruct a 2.5D model of the environment (i.e. an elevation map of the sea-bottom). The data collection is achieved by the employment of a single beam echosounder for seabed range measurements and a down-looking underwater camera. Furthermore, an acoustic data procedural analysis is developed to automatically detect the Posidonia presence, so that in future works it will be possible to operate also in low-visibility conditions. Data acquisition was carried out over different seafloor types in coastal area near Biograd Na Moru (Croatia) and the results are reported in the paper. *
scopus.description.allpeopleoriginal Ferretti R.; Bibuli M.; Caccia M.; Chiarella D.; Odetti A.; Ranieri A.; Zereik E.; Bruzzone G. *
scopus.differences scopus.publisher.name *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.relation.issue *
scopus.differences scopus.relation.volume *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.doi 10.1016/j.ifacol.2017.08.2504 *
scopus.identifier.eissn 2405-8963 *
scopus.identifier.pui 2000582713 *
scopus.identifier.scopus 2-s2.0-85044268156 *
scopus.language.iso eng *
scopus.publisher.name Elsevier B.V. *
scopus.relation.firstpage 12386 *
scopus.relation.issue 1 *
scopus.relation.lastpage 12391 *
scopus.relation.volume 50 *
scopus.title Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles *
scopus.titleeng Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
prod_378517-doc_128019.pdf

accesso aperto

Descrizione: Towards Posidonia Meadows Detection, Mapping and Automatic recognition using Unmanned Marine Vehicles
Tipologia: Versione Editoriale (PDF)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact