Combining task and motion planning efficiently in human-robot collaboration (HRC) entails several challenges because of the uncertainty conveyed by the human behavior.Tasks plan execution should be continuously monitored and updated based on the actual behavior of the human and the robot to maintain productivity and safety.We propose control-based approach based on two layers, i.e., task planning and action planning. Each layer reasons at a different level of abstraction: task planning considers high-level operations without taking into account their motion properties; action planning optimizes the execution of high-level operations based on current human state and geometric reasoning.The result is a hierarchical framework where the bottom layer gives feedback to top layer about the feasibility of each task, and the top layer uses this feedback to (re)optimize the process plan. The method is applied to an industrial case study in which a robot and a human worker cooperate to assemble a mosaic.

A Layered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration

Faroni Marco
Primo
Membro del Collaboration Group
;
Beschi Manuel
Secondo
Membro del Collaboration Group
;
Ghidini Stefano
Membro del Collaboration Group
;
Pedrocchi Nicola
Co-ultimo
Membro del Collaboration Group
;
Umbrico Alessandro
Penultimo
Membro del Collaboration Group
;
Orlandini Andrea
Co-ultimo
Membro del Collaboration Group
;
Cesta Amedeo
Co-ultimo
Supervision
2020

Abstract

Combining task and motion planning efficiently in human-robot collaboration (HRC) entails several challenges because of the uncertainty conveyed by the human behavior.Tasks plan execution should be continuously monitored and updated based on the actual behavior of the human and the robot to maintain productivity and safety.We propose control-based approach based on two layers, i.e., task planning and action planning. Each layer reasons at a different level of abstraction: task planning considers high-level operations without taking into account their motion properties; action planning optimizes the execution of high-level operations based on current human state and geometric reasoning.The result is a hierarchical framework where the bottom layer gives feedback to top layer about the feasibility of each task, and the top layer uses this feedback to (re)optimize the process plan. The method is applied to an industrial case study in which a robot and a human worker cooperate to assemble a mosaic.
2020
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
978-1-7281-6075-7
Human-Robot Collaboration
Task and Motion Planning
Timeline-based Planning
File in questo prodotto:
File Dimensione Formato  
prod_426065-doc_161945 (1).pdf

accesso aperto

Descrizione: Marco Faroni, Manuel Beschi, Stefano Ghidini, Nicola Pedrocchi, Alessandro Umbrico, et al.. A Lay ered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration. IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Aug 2020, Naples (virtual), Italy. 10.1109/RO-MAN47096.2020.9223483. hal-03157815
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 986.81 kB
Formato Adobe PDF
986.81 kB Adobe PDF Visualizza/Apri
A_Layered_Control_Approach_to_Human-Aware_Task_and_Motion_Planning_for_Human-Robot_Collaboration.pdf

solo utenti autorizzati

Descrizione: M. Faroni et al., "A Layered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration," 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy, 2020, pp. 1204-1210, doi: 10.1109/RO-MAN47096.2020.9223483.
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 985.64 kB
Formato Adobe PDF
985.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/382001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact